TO TOP

CRC/TRR 247
Heterogeneous Oxidation Catalysis in the Liquid Phase

Publications of the TRR 247


  • Büker J., Shang J., Angel S., Budiyanto E., Tüysüz H., Wiggers H., Schulz C., Grünewald M., Peng B., Muhler M.: Tert-butyl hydroperoxide decomposition as a descriptor for liquid-phase hydrocarbon oxidation over transition metal oxide-based catalysts: a screening study (GH-12158WP). ARKIVOC, 2024, 3. In press. DOI: 10.24820/ark.5550190.p012.158.
  • Cheraparambil H., Vega-Paredes M., Wang Y., Tüysüz H., Scheu C., Weidenthaler C.:  Deciphering the role of Fe impurities in the electrolyte boosting the OER activity of LaNiO3. J. Mater. Chem. A, 2024, 12, 5194. DOI: 10.1039/D3TA06733E.
  • Gerschel P., Angel S., Hammad M., Olean-Oliveira A., Toplak B., Chanda V., Martínez-Hincapié R., Sanden S., Khan A. R., Xing D., Amin A. S., Wiggers H., Hoster H., Čolić V., Andronescu C., Schulz C., Apfel U.-P., Segets D.: Determining materials for energy conversion across scales – The alkaline oxygen evolution reaction. Carbon Energ. 2024. In press.

  • Haase F., Ortega E., Saddeler S., Schmidt F.-P., Cruz D., Scholten F., Rüscher M., Martini A., Jeon H. S., Herzog A., Hejral U., Davis E. M., Timoshenko J., Knop-Gericke A., Lunkenbein T., Schulz S., Bergmann A., Roldan Cuenya B.: Role of Fe Decoration on the Oxygen Evolving State of Co3O4 Nanocatalysts. Energy Environ. Sci. 2024, accepted. DOI: 10.1039/D3EE02809G.
  • Lau K., Giera B., Barcikowski S., Reichenberger S.: The multivariate interaction between Au and TiO2 colloids: the role of surface potential, concentration, and defects. Nanoscale, 2024, 16, 2552-2564. DOI: 10.1039/D3NR06205H.
  • Meng L.Tayyebi E., Exner K. S.Viñes F.Illas F.: MXenes as Electrocatalysts for the CO2 Reduction Reaction: Recent Advances and Future Challenges. ChemElectroChem, 2024, e202300598. DOI: 10.1002/celc.202300598.
  • Omranpoor A. H., Kenmoe S.: 2-Propanol Activation on the Low Index Co3O4 Surfaces: A Comparative Study Using Molecular Dynamics Simulations. J. Catal, 2024, 14, 25. DOI: 10.3390/catal14010025.
  • Pflieger C., Eckhard T., Böttger J., Schulwitz J., Herrendorf T., Schmidt S., Salamon S., Landers J., Wende H., Kleist W., Muhler M., Cerciello F.: The catalytic effect of iron oxide phases on the conversion of cellulose-derived chars in diluted O2 and CO2. Appl. Energy, 2024, 353, Part A, 122068. DOI: 10.1016/j.apenergy.2023.122068.
  • Piotrowiak T. H., Krysiak O. A., Suhr E., Zhang J., Zehl R., Kostka A., Schuhmann W., Ludwig A.: Sputter-deposited La-Co-Mn-O nanocolumns as stable electrocatalyst for the oxygen evolution reaction. small struct. 2024, 5, 2300415. DOI: 10.1002/sstr.202300415.
  • Placke-Yan C., Bendt G., Salamon S., Landers J., Wende H., Hagemann U., Schulz S.: Versatile synthesis of sub 10 nm sized metal-doped MxCo3-xO4 nanoparticles and their electrocatalytic OER activity. Mater. Adv., 2024, accepted. DOI: 10.1039/D4MA00088A.
  • Razzaq S., Exner K.S.: Why efficient bifunctional hydrogen electrocatalysis requires a change in the reaction mechanism. iScience, 2024, 27, 108848. DOI: 10.1016/j.isci.2024.108848.
  • Saddeler S., Hagemann U., Bendt G., Schulz S.: Core Shell Co3O4@CoO Nanoparticles for Enhanced OER Activity. ChemCatChem (Special Issue), 2024, e202301327. DOI: 10.1002/cctc.202301327.
  • Sandoval-Diaz L., Cruz D., Vuijk M., Ducci G., Hävecker M., Jiang W., Plodinec M., Hammud A., Ivanov D., Götsch T., Reuter K., Schlögl R., Scheurer C., Knop-Gericke A., Lunkenbein T.:  Metastable nickel–oxygen species modulate rate oscillations during dry reforming of methane. Nat. Catal. 2024. DOI: 10.1038/s41929-023-01090-4.
  • Schmidt M. Ch., Smyczek J., Hubert P., Cieminski M., Kohlmorgen P., Schauermann S.: Growth of ultrathin cobalt oxide films on Pd(100): Refined structural model. Surf. Sci. 2024, 742, 122451. DOI: 10.1016/j.susc.2024.122451.
  • Sobota L.Bondue C. J.Hosseini P.Kaiser C.Spallek M.Tschulik K.: Impact of the Electrochemically Inert Furan Ring on the Oxidation of the Alcohol and Aldehyde Functional Group of 5-Hydroxymethylfurfural (HMF). ChemElectroChem, 2024, 11, e202300151. DOI: 10.1002/celc.202300151.
  • Tüysüz H.: Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. 2024, 57, 558-567. DOI: 10.1021/acs.accounts.3c00709.

  • Verma M., Pentcheva R.: Tuning the carrier localization, magnetic and thermoelectric properties of ultrathin (LaNiO3-δ)1/(LaAlO3)1(001) superlattices by oxygen vacancies. Phys. Rev. Res. 2024, 6, 013189. DOI: 10.1103/PhysRevResearch.6.013189.
  • Angel S., Braun M., Alkan B., Landers J., Salamon S., Wende H., Andronescu C., Schulz C., Wiggers H.: Spray-Flame Synthesis of LaFexCo1–xO3 (x = 0.2, 0.3) Perovskite Nanoparticles for Oxygen Evolution Reaction in Water Splitting: Effect of Precursor Chemistry (Acetates and Nitrates). J. Phys. Chem. A, 2023, 127, 2564-2576. DOI: 10.1021/acs.jpca.2c06601.

  • Antony R. P., Cechanaviciute I. A., Quast T., Zerdoumi R., Saddeler S., Junqueira J. R. C., Schuhmann W.: Deep reconstruction of Mo-based OER pre-catalysts in water electrolysis at high current densities. ChemCatChem, 2023, 15, e202301023. DOI: 10.1002/cctc.202301023.

  • Banko LTetteh E. B.Kostka A.Piotrowiak T. H., Krysiak O. A.Hagemann U., Andronescu C.Schuhmann W.Ludwig A.: Microscale Combinatorial Libraries for the Discovery of High-Entropy Materials. Adv. Mater. 2023, 35, 2207635. DOI: 10.1002/adma.202207635.

  • Bera A., Bullert D., Linke M., Franzka S., Hagemann U., Hartmann N., Hasselbrink E.: Interaction of 2-propanol with predominantly SrO- and TiO2-terminated SrTiO3(100) surfaces studied by vibrational sum frequency spectroscopy. Catal. Sci. Technol. 2023,13, 4988-4995 DOI: 10.1039/D3CY00310H.

  • Bondue C. J., Koper M. T. M., Tschulik K.: A Versatile and Easy Method to Calibrate a Two-Compartment Flow Cell for Differential Electrochemical Mass Spectrometry Measurements. ACS Meas. Sci. Au. 2023, 3, 277-286. DOI: 10.1021/acsmeasuresciau.3c00009.

  • Bondue C. J.Spallek M.Sobota L.Tschulik K.: Electrochemical Aldehyde Oxidation at Gold Electrodes: gem-Diol, non-Hydrated Aldehyde, and Diolate as Electroactive Species. ChemSusChem, 2023, 16, e202300685. DOI: 10.1002/cssc.202300685.

  • Budiyanto E., Ochoa-Hernández C., Tüysüz H.: Impact of alkaline treatment on mesostructured cobalt oxide for the oxygen evolution reaction. Adv. Sustain. Syst. 2023, 7, 2200499. DOI: 10.1002/adsu.202200499.

  • Büker J., Muhler M., Peng B.: Concepts of Heterogeneously Catalyzed LiquidPhase Oxidation of Cyclohexene with tertButyl Hydroperoxide, Hydrogen Peroxide and Molecular Oxygen. ChemCatChem, 2023,15, e202201216. DOI: 10.1002/cctc.202201216.
  • Davis E. M., Bergmann A., Zhan C., Kuhlenbeck H., Roldán Cuenya B.: Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction. Nat. Commun. 2023, 14, 4791. DOI: 10.1038/s41467-023-40461-0.
  • Douma D. H., Nchimi Nono K., Omranpoor A. H., Lamperti A., Debernardi A., Kenmoe S.: Probing the Local Environment of Active Sites during 2-Propanol Oxidation to Acetone on the Co3O4 (001) Surface: Insights from First-Principles O K-Edge XANES Spectroscopy. J. Phys. Chem. C, 2023, 127, 5351-5357. DOI: 10.1021/acs.jpcc.2c08959.

  • Exner K. S.: Importance of the Walden Inversion for the Activity Volcano Plot of Oxygen Evolution. Adv. Sci. 2023, 2305505. DOI: 10.1002/advs.202305505.

  • Exner K. S.: Combining descriptor-based analyses and mean-field modeling of the electrochemical interface to comprehend trends of catalytic processes at the solid/liquid interface. J. Energy Chem. 2023, 85, 288-290. DOI: 10.1016/j.jechem.2023.06.025.
  • Exner K. S.: How data-driven approaches advance the search for materials relevant to energy conversion and storage. Mater. Today Energy, 2023, 36, 101364. DOI: 10.1016/j.mtener.2023.101364.

  • Exner K. S.: Implications of the M-OO••OO-M recombination mechanism on materials screening and the oxygen evolution reaction. J. Phys. Energy, 2023, 5, 014008. DOI: 10.1088/2515-7655/aca82a.
  • Exner K. S.: Standard-state entropies and their impact on the potential-dependent apparent activation energy in electrocatalysis. J. Energy Chem. 2023, 83, 247-254. DOI: 10.1016/j.jechem.2023.04.020.

  • Exner K. S.: Importance of the volcano slope to comprehend activity and selectivity trends in electrocatalysis. Curr. Opin. Electrochem. 2023, 39, 101284. DOI: 10.1016/j.coelec.2023.101284.

  • Exner K. S.: On the mechanistic complexity of oxygen evolution: potential-dependent switching of the mechanism at the volcano apex. Mater. Horiz. 2023, 10, 2086. DOI: 10.1039/d3mh00047h.

  • Exner K. S.: Toward data- and mechanistic-driven volcano plots in electrocatalysis. ELSA, 2023, e2200014. DOI: 10.1002/elsa.202200014.

  • Exner K. S.: On the concept of metal–hydrogen peroxide batteries: improvement over metalair batteries? Energy Adv. 2023, 2, 522. DOI: 10.1039/d3ya00002h.

  • Exner K. S.: Steering Selectivity in the Four-Electron and Two-Electron Oxygen Reduction Reactions: On the Importance of the Volcano Slope. ACS Phys. Chem. Au. 2023, 3, 190-198. DOI: 10.1021/acsphyschemau.2c00054.

  • Exner K. S.: Elementary reaction steps in electrocatalysis: theory meets experiment. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2023. DOI: 10.1016/B978-0-323-85669-0.00025-8.

  • Füngerlings A., Wohlgemuth M., Antipin D., van der Minne E., Kiens E. M., Villalobos J., Risch M., Gunkel F., Pentcheva R., Baeumer C.: Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate. Nat. Commun. 2023, 14, 8284. DOI: 10.1038/s41467-023-43901-z.

  • Geiss J., Büker J., Schulte J., Peng B., Muhler M., Winterer M.: LaCo1–xFexO3 Nanoparticles in Cyclohexene Oxidation. J. Phys. Chem. C, 2023, 127, 5029-5038. DOI: 10.1021/acs.jpcc.2c08644.

  • Gunnarson A., Quast T., Dieckhöfer S., Pfänder N., Schüth F., Schuhmann W.: Stability of a Pt@HGS catalyst as a model material for fuel cell applications: The role of the local pH value. Angew. Chem. Int. Ed. 2023, 62, e202311780. DOI: 10.1002/anie.202311780.

  • Khairani I. Y., Lin Q., Landers J., Salamon S., Doñate-Buendía C., Karapetrova E., Wende H., Zangari G., Gökce B.: Solvent Influence on the Magnetization and Phase of Fe-Ni Alloy Nanoparticles Generated by Laser Ablation in Liquids. J. Nanomater. 2023, 13, 227. DOI: 10.3390/nano13020227.

  • Klein J., Kampermann L., Mockenhaupt B., Behrens M., Strunk J., Bacher G.: Limitations of the Tauc Plot Method. Adv. Funct. Mater. 2023, 33, 2304523. DOI: 10.1002/adfm.202304523.

  • Lau K., Niemann F., Abdiaziz K., Heidelmann M., Yang Y., Tong Y., Fechtelkord M., Schmidt T. C., Schnegg A., Campen R. K., Peng B., Muhler M., Reichenberger S., Barcikowski S.: Differentiating between Acidic and Basic Surface Hydroxyls on Metal Oxides by Fluoride Substitution: A Case Study on Blue TiO2 from Laser Defect Engineering. Angew. Chem., Int. Ed. 2023, 62, e202213968. DOI: 10.1002/anie.202213968.

  • Luan C.Angona J., Krishnan A.B., Corva M., Hosseini P., Heidelmann M., Hagemann U., Tetteh E.B., Schuhmann W., Tschulik K., Li T.: Linking Composition, Structure and Thickness of CoOOH layers to Oxygen Evolution Reaction Activity by Correlative Microscopy. Angew. Chem., Int. Ed. 2023, 62, e202305982. DOI: 10.1002/anie.202305982.

  • Luan C., Corva M., Hagemann U., Wang H., Heidelmann M., Tschulik K., Li T.: Atomic-Scale Insights into Morphological, Structural, and Compositional Evolution of CoOOH during Oxygen Evolution Reaction. ACS Catal. 2023, 13, 1400-1411. DOI: 10.1021/acscatal.2c03903.

  • Mackert V., Winter T., Jackson S., Kalia R., Levish A., Lukic S., Geiss J., Winterer M.: Very Small Nanocrystalline Tin Dioxide Particles: Local-, Crystal-, and Micro-Structure. Phys. Chem. C, 2023, 127, 17389-17405. DOI: 10.1021/acs.jpcc.3c02110.

  • Omranpoor A. H., Bera A., Buller D., Linke M., Salamon S. Webers S., Wende H., Hasselbrink E., Spohr E., Kenmoe S.: 2-Propanol interacting with Co3O4(001): A combined vSFS and AIMD study. J. Chem. Phys. 2023, 158, 164703. DOI: 10.1063/5.0142707.

  • Pacheco I., Bouvier M., Magnussen O. M., Allongue P., Maroun F.: Growth of ultrathin well-defined and crystalline films of Co3O4 and CoOOH by electrodeposition. J. Electrochem. Soc. 2023, 170, 012501. DOI: 10.1149/1945-7111/acafaa.

  • Piotrowiak T. H.Zehl R.Suhr E., Banko L.Kohnen B.Rogalla D.Ludwig A.: Unusual Phase Formation in Reactively Sputter-Deposited La—Co—O Thin-Film Libraries. Adv. Eng. Mater. 2023, 25 2201050. DOI: 10.1002/adem.202201050.

  • Piotrowiak T. H.Zehl R.Suhr E.Kohnen B., Banko L.Ludwig A.: Combinatorial Sputter Synthesis of Single-Phase La(XYZ)O3 ± σ Perovskite Thin-Film Libraries: A New Platform for Materials Discovery. Adv. Eng. Mater. 2023, 25, 2300437. DOI: 10.1002/adem.202300437.

  • Rabe A.Jaugstetter M.Hiege F.Cosanne N.Ortega K. F.Linnemann J.Tschulik K.Behrens M.: Tailoring Pore Size and Catalytic Activity in Cobalt Iron Layered Double Hydroxides and Spinels by Microemulsion-Assisted pH-Controlled Co-Precipitation. ChemSusChem, 2023, 16, e202202015. DOI: 10.1002/cssc.202202015.

  • Razzaq S., Exner K. S.: Materials Screening by the Descriptor Gmax(η): The Free-Energy Span Model in Electrocatalysis. ACS Catal. 2023, 13, 1740-1758. DOI: 10.1021/acscatal.2c03997.

  • Santana Santos C., Nsolebna Jaato B., Sanjuán I., Schuhmann W., Andronescu C.: Operando scanning electrochemical probe microscopy during electrocatalysis. Chem. Rev., 2023, 123, 4972-5019. DOI: 10.1021/acs.chemrev.2c00766.

  • Spellauge M., Tack M., Streubel R., Miertz M., Exner K. S., Reichenberger S., Barcikowski S., Huber H. P., Ziefuss A. R.: Photomechanical Laser Fragmentation of IrO2 Microparticles for the Synthesis of Active and Redox-Sensitive Colloidal Nanoclusters. Small, 2023, 19, 2206485. DOI: 10.1002/smll.202206485.

  • Tahir S., Landers J.Salamon S.Koch D.Doñate-Buendía C.Ziefuß A. R., Wende H.Gökce B.: Development of Magnetocaloric Microstructures from Equiatomic Iron–Rhodium Nanoparticles through Laser Sintering. Adv. Eng. Mater. 2023, 25, 2300245. DOI: 10.1002/adem.202300245.

  • Tang D., Shen Z., Lechler S., Lu G., Yao L., Hu Y., Huang X., Muhler M., Zhao G., Peng B.: Aerobic oxidative lactonization of diols at room temperature over defective titanium-based oxides in water. J. Catal. 2023, 418, 237-246. DOI: 10.1016/j.jcat.2023.01.025.

  • Timoshenko J., Haase F. T., Saddeler S., Rüscher M., Jeon H. S., Herzog A., Hejral U., Bergmann A., Schulz S., Roldan Cuenya B.: Deciphering the Structural and Chemical Transformations of Oxide Catalysts during Oxygen Evolution Reaction Using Quick X-ray Absorption Spectroscopy and Machine Learning. J. Am. Chem. Soc. 2023, 145, 4065-4080. DOI: 10.1021/jacs.2c11824.

  • Varhade S., Meloni G., Tetteh E. B., Kim M., Schumacher S., Quast T., Andronescu C., Unwin P., Schuhmann W.: Elucidation of alkaline electrolyte-surface interaction in SECCM using a pH-independent redox probe. Electrochim. Acta, 2023, 460, 142548. DOI: 10.1016/j.electacta.2023.142548      

  • Varhade S., Tetteh E. B., Saddeler S., Schumacher S., Aiyappa H. B., Bendt G., Schulz S., Andronescu C., Schuhmann W.: Crystal plane-related oxygen evolution activity of single hexagonal Co3O4 spinel particles. Chem. Eur. J. 2023, 29, e202203474. DOI: 10.1002/chem.202203474.

  • Yang F., Lopez Luna M., Haase F. T., Escalera-López D., Yoon A., Rüscher M., Rettenmaier C., Jeon H. S., Ortega E., Timoshenko J., Bergmann A., Chee S. W., Roldan Cuenya B.: Spatially and Chemically Resolved Visualization of Fe Incorporation into NiO Octahedra during the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2023, 145, 21465-21474. DOI: 10.1021/jacs.3c07158.

  • Zahn D., Landers J., Diegel M., Salamon S., Stihl A., Schacher F. H., Wende H., Dellith J., Dutz S.: Optimization of Magnetic Cobalt Ferrite Nanoparticles for Magnetic Heating Applications in Biomedical Technology. Nanomater. 2023, 13, 1673. DOI: 10.3390/nano13101673.

  • Zerdoumi R., Savan A., Amalraj M., Tetteh E. B., Lourens F., Krysiak O. A., Junqueira J. R. C., Ludwig A., Schuhmann W.: Combinatorial screening of electronic and geometric effects in compositionally complex solid solutions towards a rational design of electrocatalysts. Adv. Energy Mater. 2023, 13, 2302177. DOI: 10.1002/aenm.202302177. 

  • Alkan B., Braun M., Landrot G., Rüdiger O., Andronescu C., DeBeer S., Schulz C., Wiggers H.: Spray-flame-synthesized Sr-and Fe-substituted LaCoO3 perovskite nanoparticles with enhanced OER activities. J. Mater. Sci. 2022, 57, 18923-18936. DOI: 10.1007/s10853-022-07738-z.
  • Bowker M., DeBeer S., Dummer N. F., Hutchings G. J., Scheffler M., Schüth F., Taylor S. H., Tüysüz H.: Advancing critical chemical processes for a sustainable future: Challenges for industry and the Max Planck-Cardiff Centre on the fundamentals of heterogeneous catalysis (FUNCAT). Angew. Chem. Int. Ed. 2022, 134, e202209016. DOI: 10.1002/anie.202209016.
  • Büker J., Angel S., Salamon S., Landers J., Falk T., Wende H., Wiggers H., Schulz C., Muhler M., Peng B.: Structure-activity correlation in aerobic cyclohexene oxidation and peroxide decomposition over CoxFe3-xO4 spinel oxides. Catal. Sci. Technol. 2022, 12, 3594-3605. DOI: 10.1039/D2CY00505K.
  • Büker J., Peng B.: Mechanistic insights into liquid-phase autoxidation of cyclohexene in acetonitrile. Mol. Catal. 2022, 525, 112367. DOI: 10.1016/j.mcat.2022.112367.
  • Budiyanto E., Salamon S., Wang Y., Wende H., Tüysüz H.: Phase Segregation of Cobalt Iron Oxide Nanowires Towards Enhanced Oxygen Evolution Reaction Activity. JACS Au, 2022, 2, 3, 697-710. DOI: 10.1021/jacsau.1c00561.
  • Budiyanto E., Tüysüz H.: Cobalt oxide nanowires with controllable diameter and crystal structures for the oxygen evolution reaction. Eur. J. Inorg. Chem. 2022, 18, e202200065. DOI: 10.1002/ejic.202200065. 

  • Exner K. S.: Rapid Screening of Mechanistic Pathways for Oxygen-Reduction Catalysts. ChemCatChem, 2022, e202201222. DOI: 10.1002/cctc.202201222.
  • Exner K. S.: Blickpunkt Nachwuchs: Theoretische Elektrokatalyse. Nachrichten aus der Chemie, 2022, 70, 82-84. DOI: 10.1002/nadc.20224125416.
  • Falk T., Budiyanto E., Dreyer M., Büker J., Weidenthaler C., Behrens M., Tüysüz H., Muhler M., Peng B.: Doping of Nanostructured Co3O4 with Cr, Mn, Fe, Ni, and Cu for the Selective Oxidation of 2-Propanol. ACS Appl. Nano Mater. 2022, 5, 17783-17794. DOI: 10.1021/acsanm.2c03757.
  • Geiss J., Falk T., Ognjanovic S., Anke S., Peng B., Muhler M., Winterer M.: Atom Pair Frequencies as a Quantitative Structure–Activity Relationship for Catalytic 2-Propanol Oxidation over Nanocrystalline Cobalt–Iron–Spinel. J. Phys. Chem. C, 2022, 126, 25, 10346-10358. DOI: 10.1021/acs.jpcc.2c00788.
  • He, T, Exner K. S.: Computational Electrochemistry Focusing on Nanostructured Catalysts: Challenges and Opportunities. Mater. Today Energy, 2022, 28, 101083. DOI: 10.1016/j.mtener.2022.101083.
  • Jaugstetter M., Blanc N., Kratz M., Tschulik K.: Electrochemistry under Confinement. Chem. Soc. Rev. 2022, 51, 2491-2543. DOI: 10.1039/D1CS00789K. 
  • Kenmoe, S, Douma D. H., Raji A. T., M’Passi-Mabiala B., Götsch T., Girgsdies F., Knop-Gericke A., Schlögl R., Spohr E.: X-ray Absorption Near-Edge Structure (XANES) at the O K-Edge of Bulk Co3O4: Experimental and Theoretical Studies. J. Nanomater. 2022, 12, 921. DOI: 10.3390/nano12060921.
  • Klein J., Kampermann L., Korte J., Dreyer M., Budiyanto E., Tüysüz H., Ortega K. F., Behrens M., Bacher G.: Monitoring Catalytic 2‑Propanol Oxidation over Co3O4 Nanowires via In Situ Photoluminescence Spectroscopy. J. Phys. Chem. Lett. 2022, 13, 3217. DOI: 10.1021/acs.jpclett.2c00098.
  • Kox T., Omranpoor A. H., Kenmoe S.: Structure and Reactivity of CoFe2O4(001) Surfaces in Contact with a Thin Water Film. Physchem, 2022, 2, 321-333. DOI: 10.3390/physchem2040023.

  • Li T., Devaraj A., Kruse N.: Atomic-scale characterization of (electro-)catalysts and battery materials by atom probe tomography. Cell Rep. Phys. Sci. 2022, 3, 101188. DOI: 10.1016/j.xcrp.2022.101188.

  • Liu Z., Amin H. M. A., Peng Y., Corva M., Pentcheva R., Tschulik K.: Facet-Dependent Intrinsic Activity of Single Co3O4 Nanoparticles for Oxygen Evolution Reaction. Adv. Funct. Mater. 2023, 33, 2210945. DOI: 10.1002/adfm.202210945.

  • Moon G., Wang Y., Kim S., Budiyanto E., Tüysüz H.: Preparation of Practical High-Performance Electrodes for Acidic and Alkaline Media Water Electrolysis. ChemSusChem 2022, 15, e202102114. DOI: 10.1002/cssc.202102114.
  • Omranpoor A. H., Kox T., E. Spohr, Kenmoe S.: Influence of temperature, surface composition and electrochemical environment on 2-propanol decomposition at the Co3O4(001)/H2O interface. Appl. Surf. Sci. 2022, 12, 100319. DOI: 10.1016/j.apsadv.2022.100319.

  • Priamushko T., Budiyanto E., Eshraghi N., Weidenthaler C., Kahr J., Hahn M., Tüysüz H., Kleitz F.: Incorporation of Cu/Ni in ordered mesoporous Co-based spinels to facilitate oxygen evolution and reduction reactions in alkaline media and aprotic Li-O2 batteries. ChemSusChem 2022, 15, e202102404. DOI: 10.1002/cssc.202102404.
  • Razzaq S., Exner K. S.: Method to Determine the Bifunctional Index for the Oxygen Electrocatalysis from Theory. ChemElectroChem, 2022, 9, e202101603. DOI: 10.1002/celc.202101603.
  • Razzaq S., Exner K. S.: Statistical Analysis of Breaking Scaling Relation in the Oxygen Evolution Reaction. Electrochim. Acta, 2022, 412, 140125. DOI: 10.1016/j.electacta.2022.140125.
  • Rushiti A., Falk T., Muhler M., Haettig C.: Interactions of Water and Short-Chain Alcohols with CoFe2O4 (001) Surfaces at Low Coverages. Phys. Chem. Chem. Phys. 2022, 24, 23195-23208. DOI: 10.1039/D2CP02480B.
  • Saw E. N., Kanokkanchana K., Amin H. M. A., Tschulik K.: Unravelling Anion Solvation in Water-Alcohol Mixtures by Single Entity Electrochemistry. ChemElectroChem, 2022, e202101435. DOI: 10.1002/celc.202101435.
  • Xiang W., Yang N., Li X., Linnemann J., Hagemann U., Ruediger O., Heidelmann M., Falk T., Aramini M., DeBeer S., Muhler M., Tschulik K., Li T.: 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nat. Commun. 2022, 13, 179. DOI: 10.1038/s41467-021-27788-2.
  • Yu M., Budiyanto E., Tüysüz H.: Principle of water electrolysis and recent progress of nickel, cobalt and iron-based oxides for oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, e202103824. DOI: 10.1002/anie.202103824.  

  • Yu M., Weidenthaler C., Wang Y., Budiyanto E., Şahin E. O., Chen M., DeBeer S., Ruediger O., Tüysüz H.: Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, e202211543. DOI: 10.1002/anie.202211543.

  • Zerebecki S., Salamon S., Lander J., Yang Y., Tong Y., Budiyanto E., Waffel D., Dreier M., Saddeler S., Kox T., Kenmoe S., Spohr E., Schulz S., Behrens M., Muhler M., Tüysüz H., Campen R. K., Wende H., Reichenberger S., Barcikowski S.: Engineering of Cation Occupancy of CoFe2O4 Oxidation Catalysts by Nanosecond, Single-Pulse Laser Excitation in Water. ChemCatChem, 2022, 14, e202101785. DOI: 10.1002/cctc.202101785.
  • Zerebecki S., Schott K., Salamon S., Landers J., Wende H., Budiyanto E., Tüysüz H., Barcikowski S., Reichenberger S.: Gradually Fe-Doped Co3O4 Nanoparticles in 2-Propanol and Water Oxidation Catalysis with Single Laser Pulse Resolution. J. Phys. Chem. C, 2022, 126, 15144-15155. DOI: 10.1021/acs.jpcc.2c01753.
  • Zhang J., Quast T., He W., Dieckhöfer S., Junqueira J. R. C., Öhl D., Wilde P., Jambrec D., Chen Y.-T., Schuhmann W.: In-situ carbon corrosion and Cu leaching as a strategy for boosting oxygen evolution reaction in multi-metal electrocatalysts. Adv. Mater. 2022, 34, 2109108. DOI: 10.1002/adma.202109108